1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
// Copyright (c) Microsoft Corporation.
// Licensed under the MIT License.

// Functionality in this file can be removed when range support is dropped from the QIR runtime.

use crate::{arrays::QirArray, strings::convert};
use std::{ffi::CString, rc::Rc};

#[repr(C)]
pub struct Range {
    pub start: i64,
    pub step: i64,
    pub end: i64,
}

#[no_mangle]
pub extern "C" fn quantum__rt__range_to_string(input: Range) -> *const CString {
    let mut range_str = input.start.to_string() + "..";
    if input.step != 1 {
        range_str += &(input.step.to_string() + "..");
    }
    range_str += &input.end.to_string();

    convert(&range_str)
}

#[no_mangle]
pub unsafe extern "C" fn quantum__rt__array_slice_1d(
    arr: *const QirArray,
    range: Range,
) -> *const QirArray {
    let array = &*arr;
    let item_size: i64 = array
        .elem_size
        .try_into()
        .expect("Array element size too large for `usize` type on this platform.");
    let mut slice = QirArray {
        elem_size: array.elem_size,
        data: Vec::new(),
    };
    let iter: Box<dyn Iterator<Item = i64>> = if range.step > 0 {
        Box::new(range.start * item_size..=range.end * item_size)
    } else {
        Box::new((range.end * item_size..=range.start * item_size).rev())
    };

    let step: i64 = range.step.abs();
    for i in iter.step_by((step * item_size).try_into().expect(
        "Range step multiplied by item size is too large for `usize` type on this platform",
    )) {
        let index = i
            .try_into()
            .expect("Item index too large for `usize` type on this platform.");
        let mut copy = vec![0; array.elem_size];
        copy.copy_from_slice(&array.data[index..index + array.elem_size]);
        slice.data.append(&mut copy);
    }

    Rc::into_raw(Rc::new(slice))
}

#[cfg(test)]
mod tests {
    use super::*;
    use crate::{
        arrays::{
            __quantum__rt__array_concatenate, __quantum__rt__array_copy,
            __quantum__rt__array_create_1d, __quantum__rt__array_get_element_ptr_1d,
            __quantum__rt__array_get_size_1d, __quantum__rt__array_update_reference_count,
        },
        strings::{__quantum__rt__string_get_data, __quantum__rt__string_update_reference_count},
    };
    use std::ffi::CStr;

    #[test]
    fn test_range_to_string() {
        let input4 = Range {
            start: 0,
            step: 1,
            end: 9,
        };
        let str4 = quantum__rt__range_to_string(input4);
        unsafe {
            assert_eq!(
                CStr::from_ptr(__quantum__rt__string_get_data(str4))
                    .to_str()
                    .unwrap(),
                "0..9"
            );
        }
        let input5 = Range {
            start: 0,
            step: 2,
            end: 12,
        };
        let str5 = quantum__rt__range_to_string(input5);
        unsafe {
            assert_eq!(
                CStr::from_ptr(__quantum__rt__string_get_data(str5))
                    .to_str()
                    .unwrap(),
                "0..2..12"
            );
        }
        unsafe {
            __quantum__rt__string_update_reference_count(str4, -1);
            __quantum__rt__string_update_reference_count(str5, -1);
        }
    }

    #[test]
    fn test_array_slicing() {
        let arr = __quantum__rt__array_create_1d(1, 3);
        unsafe {
            assert_eq!(__quantum__rt__array_get_size_1d(arr), 3);
            let first = __quantum__rt__array_get_element_ptr_1d(arr, 0);
            assert_eq!(*__quantum__rt__array_get_element_ptr_1d(arr, 0), 0);
            *first = 42;
            assert_eq!(*__quantum__rt__array_get_element_ptr_1d(arr, 0), 42);
            let second = __quantum__rt__array_get_element_ptr_1d(arr, 1);
            assert_eq!(*__quantum__rt__array_get_element_ptr_1d(arr, 1), 0);
            *second = 31;
            assert_eq!(*__quantum__rt__array_get_element_ptr_1d(arr, 1), 31);
            let arr2 = __quantum__rt__array_copy(arr, true);
            assert_eq!(__quantum__rt__array_get_size_1d(arr2), 3);
            assert_eq!(*__quantum__rt__array_get_element_ptr_1d(arr2, 0), 42);
            assert_eq!(*__quantum__rt__array_get_element_ptr_1d(arr2, 1), 31);
            let arr3 = __quantum__rt__array_concatenate(arr, arr2);
            assert_eq!(__quantum__rt__array_get_size_1d(arr3), 6);
            assert_eq!(*__quantum__rt__array_get_element_ptr_1d(arr3, 0), 42);
            assert_eq!(*__quantum__rt__array_get_element_ptr_1d(arr3, 1), 31);
            assert_eq!(*__quantum__rt__array_get_element_ptr_1d(arr3, 2), 0);
            assert_eq!(*__quantum__rt__array_get_element_ptr_1d(arr3, 3), 42);
            assert_eq!(*__quantum__rt__array_get_element_ptr_1d(arr3, 4), 31);
            assert_eq!(*__quantum__rt__array_get_element_ptr_1d(arr3, 5), 0);
            // Third array crated via concatenation has contents [42, 31, 0, 42, 31, 0], create
            // fourth array via slicing with step size 2, expected contents [42, 0, 31].
            let arr4 = quantum__rt__array_slice_1d(
                arr3,
                Range {
                    start: 0,
                    step: 2,
                    end: 5,
                },
            );
            assert_eq!(__quantum__rt__array_get_size_1d(arr4), 3);
            assert_eq!(*__quantum__rt__array_get_element_ptr_1d(arr4, 0), 42);
            assert_eq!(*__quantum__rt__array_get_element_ptr_1d(arr4, 1), 0);
            assert_eq!(*__quantum__rt__array_get_element_ptr_1d(arr4, 2), 31);
            // Create fifth array via slicing with reverse iteration, expected contents
            // [31, 0, 42].
            let arr5 = quantum__rt__array_slice_1d(
                arr3,
                Range {
                    start: 4,
                    step: -2,
                    end: 0,
                },
            );
            assert_eq!(__quantum__rt__array_get_size_1d(arr5), 3);
            assert_eq!(*__quantum__rt__array_get_element_ptr_1d(arr5, 0), 31);
            assert_eq!(*__quantum__rt__array_get_element_ptr_1d(arr5, 1), 0);
            assert_eq!(*__quantum__rt__array_get_element_ptr_1d(arr5, 2), 42);
            // Create sixth array with range end less than range start, should succeed and create
            // an empty array.
            let arr6 = quantum__rt__array_slice_1d(
                arr5,
                Range {
                    start: 0,
                    step: 1,
                    end: -1,
                },
            );
            // Confirm each copy, concatenation, and slice is independent of others.
            assert_eq!(__quantum__rt__array_get_size_1d(arr6), 0);
            __quantum__rt__array_update_reference_count(arr, -1);
            assert_eq!(*__quantum__rt__array_get_element_ptr_1d(arr2, 1), 31);
            assert_eq!(*__quantum__rt__array_get_element_ptr_1d(arr3, 0), 42);
            __quantum__rt__array_update_reference_count(arr2, -1);
            assert_eq!(*__quantum__rt__array_get_element_ptr_1d(arr3, 0), 42);
            assert_eq!(*__quantum__rt__array_get_element_ptr_1d(arr3, 1), 31);
            assert_eq!(*__quantum__rt__array_get_element_ptr_1d(arr3, 2), 0);
            assert_eq!(*__quantum__rt__array_get_element_ptr_1d(arr3, 3), 42);
            assert_eq!(*__quantum__rt__array_get_element_ptr_1d(arr3, 4), 31);
            assert_eq!(*__quantum__rt__array_get_element_ptr_1d(arr3, 5), 0);
            __quantum__rt__array_update_reference_count(arr3, -1);
            assert_eq!(*__quantum__rt__array_get_element_ptr_1d(arr4, 0), 42);
            assert_eq!(*__quantum__rt__array_get_element_ptr_1d(arr4, 1), 0);
            assert_eq!(*__quantum__rt__array_get_element_ptr_1d(arr4, 2), 31);
            __quantum__rt__array_update_reference_count(arr4, -1);
            assert_eq!(*__quantum__rt__array_get_element_ptr_1d(arr5, 0), 31);
            assert_eq!(*__quantum__rt__array_get_element_ptr_1d(arr5, 1), 0);
            assert_eq!(*__quantum__rt__array_get_element_ptr_1d(arr5, 2), 42);
            __quantum__rt__array_update_reference_count(arr5, -1);
            __quantum__rt__array_update_reference_count(arr6, -1);
        }
    }
}